谈数据库索引和Sqlite中索引的使用
来源:未知 责任编辑:责任编辑 发表时间:2015-09-16 20:05 点击:次
谈数据库索引和Sqlite中索引的使用
要使用索引对数据库的数据操作进行优化,那必须明确几个问题:
1.什么是索引 www.2cto.com
2.索引的原理
3.索引的优缺点
4.什么时候需要使用索引,如何使用
围绕这几个问题,来探究索引在数据库操作中所起到的作用。
1.数据库索引简介
回忆一下小时候查字典的步骤,索引和字典目录的概念是一致的。字典目录可以让我们不用翻整本字典就找到我们需要的内容页数,然后翻到那一页就可以。索引也是一样,索引是对记录按照多个字段进行排序的一种展现。对表中的某个字段建立索引会创建另一种数据结构,其中保存着字段的值,每个值还包括指向与它相关记录的指针。这样,就不必要查询整个数据库,自然提升了查询效率。同时,索引的数据结构是经过排序的,因而可以对其执行二分查找,那就更快了。
2. B-树与索引
大多数的数据库都是以B-树或者B+树作为存储结构的,B树索引也是最常见的索引。先简单介绍下B-树,可以增强对索引的理解。
B-树是为磁盘设计的一种多叉平衡树,B树的真正最准确的定义为:一棵含有t(t>=2)个关键字的平衡多路查找树。一棵M阶的B树满足以下条件:
1)每个结点至多有M个孩子;
2)除根结点和叶结点外,其它每个结点至少有M/2个孩子;
3)根结点至少有两个孩子(除非该树仅包含一个结点);
4)所有叶结点在同一层,叶结点不包含任何关键字信息,可以看作一种外部节点;
5)有K个关键字的非叶结点恰好包含K+1个孩子; www.2cto.com
B树中的每个结点根据实际情况可以包含大量的关键字信息和分支(当然是不能超过磁盘块的大小,根据磁盘驱动(disk drives)的不同,一般块的大小在1k~4k左右);这样树的深度降低了,这就意味着查找一个元素只要很少结点从外存磁盘中读入内存,很快访问到要查找的数据。B-树上操作的时间通常由存取磁盘的时间和CPU计算时间这两部分构成。而相对于磁盘的io速度,cpu的计算时间可以忽略不计,所以B树的意义就显现出来了,树的深度降低,而深度决定了io的读写次数。
B树索引是一个典型的树结构,其包含的组件主要是:
1)叶子节点(Leaf node):包含条目直接指向表里的数据行。
2)分支节点(Branch node):包含的条目指向索引里其他的分支节点或者是叶子节点。
3) 根节点(Root node):一个B树索引只有一个根节点,它实际就是位于树的最顶端的分支节点。
如下图所示:
每个索引都包含两部分内容,一部分是索引本身的值,第二部分即指向数据页或者另一个索引也的指针。每个节点即为一个索引页,包含了多个索引。 www.2cto.com
当你为一个空表建立一个索引,数据库会分配一个空的索引页,这个索引页即代表根节点,在你插入数据之前,这个索引页都是空的。每当你插入数据,数据库就会在根节点创建索引条目,。当根节点插满的时候,再插入数据时,根节点就会分裂。举个例子,根节点插入了如图所示的数据。(超过4个就分裂),这时候插入H,就会分裂成2个节点,移动G到新的根节点,把H和N放在新的右孩子节点中。如图所示:
相关新闻>>
最新推荐更多>>>
- 发表评论
-
- 最新评论 更多>>